Advanced infrared face mask segmentation using a custom lightweight U-Net model

Type de document

Articles dans des actes de congrès

Année

2025

Langue

Anglais

Titre des actes

2024 IEEE International Multi-Conference on Smart Systems & Green Process (IMC-SSGP)

Maison d’édition

IEEE

Résumé

Face mask segmentation in the infrared domain rep-resents an innovative technique aimed at improving the accuracy and efficiency of detecting and isolating face masks in thermal images. This approach holds significant relevance in various applications, such as enhancing public health by verifying mask usage in medical environments, improving security through more accurate facial recognition of individuals wearing masks, and advancing human-computer interaction by enabling hands-free device control in mask-mandatory settings, thereby promoting safety and hygiene. In this research, we propose a novel solution that employs deep learning algorithms with infrared imaging to overcome the limitations of conventional mask detection methods. The core of this solution is a custom-designed, optimized variant of the U-Net model. Furthermore, this study forms part of a larger project focused on developing stations for detecting and quantifying leaks in medical masks across various mask types using infrared technologies and artificial intelligence.

Mots-clés

Équipement de protection individuelle, Personal protective equipment, Détection des fuites, Leak detection, Rayonnement infrarouge, Infrared radiation, Équipement de protection respiratoire, Respirator

Numéro de projet IRSST

2022-0008

Ce document n'est pas disponible pour le moment.

Partager

COinS