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ABSTRACT 

 
Many workers are exposed to a range of particles present on a nanometric scale. In occupational 
hygiene, it is common to differentiate manufactured nanoparticles (NP) from ultrafine particles 
(UFP) coming from natural, human or industrial sources. Given that major deficiencies exist in 
the usual risk assessment approaches for these particles, the objective of this research was to 
assess occupational UFP and NP exposures. The secondary objective was comprehensive testing 
of the assessment capabilities regarding occupational NP and UFP exposures in an industrial and 
laboratory context. Two main types of assessment were performed during this research. The first 
concerns the assessment of the fine and ultrafine particle concentrations with a particle counter 
(P-Trak, model 8525), and the second pertains to the assessment of fine and ultrafine particle 
size distribution with an electrical low pressure impactor (ELPI). The measurements were taken 
in two welding schools, an aluminium smelter, the research centre of a thermoplastics processing 
company, and three university laboratories producing and/or using nanoparticles.  

The results revealed that aluminium smelter workers, people who perform welding tasks, and 
workers in the thermoplastic processing industry are exposed to UFPs. However, the assessments 
performed under this study do not reveal high NP concentrations in research laboratories. Only 
NP production by milling generated detectable NP concentrations. NP handling in glove boxes of 
two other laboratories seems to prevent worker exposure adequately.  

There is currently no consensus concerning UFP and NP exposure evaluation measures. 
However, our findings suggest that the P-Trak is suitable for occupational assessment of UFP 
concentrations, whereas several uncertainties remain to assess NP exposure, particularly in their 
agglomerated form. In view of this research, it appears that a characterization and control study 
of occupational NP and UFP exposure should include assessment of the mass and particle 
number concentrations, measurement of granulometric distribution and electron microscopic 
characterization of nanoscale particles. 
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1.ORIGIN AND CONTEXT OF THE STUDY 

 
It is now recognized that workers are exposed to a whole range of particles present on a 
nanometric scale. Nanometric scale is defined as a size ranging from 1 to 100 nanometres (nm). 
In occupational health, it is common to differentiate manufactured nanoparticles (NP) from 
ultrafine particles (UFP), which originate from “natural, human or industrial sources, such as part 
of the smoke or fumes generated by forest fires, cigarettes, internal combustion engines or 
welding operations” [1]. NPs thus are produced for an industrial purpose, while UFPs are 
produced unintentionally during industrial activities. These are the definitions of NP and UFP 
used in this report.  
 
Nanotechnologies (NT) are developing extremely rapidly. In 2008, the Agence française de 
sécurité sanitaire de l’environnement et du travail (AFSSET) (today called Agence nationale de 
sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)) identified several 
hundred mass market products containing nanomaterials: textiles, cosmetics, food, sporting 
goods, construction materials [2]. The IRSST also indicated, in 2008, that more than 650 
products containing NPs were already commercially available [1]. In July 2011, the list 
published by the Woodrow Wilson Center for Scholars included 1317 commercially available 
products containing nanoparticles in its online inventory. A recent survey estimates that 21.2% 
of companies in the Swiss chemical industry use NPs; this percentage falls to 0.6% for the Swiss 
manufacturing industry as a whole [3]. Certain nanomaterials are also found in several 
construction products, particularly concrete, steel, ceramics, glass and paint [4]. According to 
Nano Québec, Québec’s strengths in the NT field are concentrated in four priority sectors: 
1) micro/nanosystems, particularly including the processes (micro/nanomanufacturing, electronic 
assembly, encapsulation, etc.) and development of devices (thin layers, electromechanical 
microsystems, etc.); 2) processing of materials, particularly including synthesis of materials 
(nanomaterials, thin layers, synthesis processes (plasma, etc.) and their integration (composites, 
coatings, sensors, etc.); 3) forestry and clean technologies, particularly including green materials 
(nanocellulose, recyclable materials, etc.) and energy production or storage techniques 
(photovoltaic, LED, batteries, etc.); and 4) nano-biohealth, particularly including devices 
(biosensors, biocompatible materials, etc.) and projects for the development of knowledge or 
techniques in the health/safety field [5]. 
 
Given the increased use of NPs in industrial applications, more and more workers thus are likely 
to be exposed to NPs. In addition, several studies suggest the possibility of health risks specific 
to these particles. There are also parallel concerns regarding the conditions which could generate 
exposure to these NPs and the means required to measure and control these conditions. Thus, 
there was a 124% growth in environmental, health and safety publications concerning this 
subject between 2004 and 2007, while this growth rate was only 29% for the same period for 
nanotechnology as a whole [6]. Faced with these situations of uncertainty, the IRSST 
recommends a preventive and even a precautionary approach to avoid any NP exposure [1]. 
AFSSET also recommends acting without waiting in the name of the precautionary principle, 
particularly by encouraging research in the exposure assessment fields [2]. The National Institute 
for Occupational Safety and Health (NIOSH) identified 10 critical fields concerning 
nanotechnology research. Among these fields, research on measurement methods and exposure 
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assessment strategies are necessary to improve occupational risk prevention [7]. These concerns 
also led the creation of numerous working groups, concerned about ensuring the safety of 
potentially exposed persons. Among these groups arising from national and supranational bodies, 
the United Kingdom Health and Safety Executive (HSE) [8], the Nordic Council of Ministers 
(NORDEN) [9] and the European Agency for Safety and Health at Work (EU-OSHA) [10]. 
Finally, in Québec, significant deficiencies remain regarding the exposure assessment and 
support offered to nanotechnology businesses. The IRSST also indicated, in 2008, that no NP 
assessment had been performed in the work environment by its researchers [1]. 
 
A problem also emerges with UFPs. It has long been known that these particles are present in 
many work environments, but it is only in the past few years that epidemiological research has 
suggested that UFPs can contribute to cardiovascular and respiratory problems [11-16]. 
However, there is little documentation of the UFP exposure levels in the work environments, 
even though certain data has been published in the past few years, for example, regarding 
smelters [17-20], welding processes [21-24], grinding processes [25] and metal machining 
processes [26]. However, no inventory of occupational UFP exposure sources currently exists, 
nor any consensus on exposure assessment tools. A project called MatPuf was deployed in 
France in 2010 to identify occupational situations generating UFPs, with the aim of producing a 
job-UFP exposure matrix. As in the case of NPs, there is a need for better understanding and 
better characterization of occupational UFP exposure. 
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2.STATE OF KNOWLEDGE OF THE PROBLEM OF OCCUPATIONAL 
EXPOSURE TO ULTRAFINE PARTICLES AND NANOPARTICLES 

The NORDEN [9], IRSST [1] and EU-OSHA [10] literature review synthesis, produced in 2007, 
2008 and 2009 respectively, served as a basis for the points presented in this section. For the 
purposes of this section, when it is desirable to group NPs and UFPs together, we refer to them 
as nanomaterials (NM). 

 
2.1.1 Effects on Health and Safety 

Several studies suggest cardiovascular and respiratory health effects for environmental and/or 
occupational UFP exposures [11, 14, 27, 28].  In addition, several synthesis documents have 
been published concerning the effects of nanoparticles. All the information in this section thus is 
derived from the documents by Kaluza et al. [10] and Ostiguy et al. [29]. Although there is still a 
debate on the mechanisms, “in animals, several effects have already been shown, including toxic 
effects on several organs (heart, lungs, kidneys, reproductive system…), as well as genotoxicity 
and cytotoxicity” [29]. Short-term animal studies are said to have shown reactions of 
inflammation, cytotoxicity and lung tissue damage. Distribution to other organs via the blood 
system or the brain directly via the nose is considered possible, but requires verification by other 
studies. Although cutaneous sensitization has already been observed, an intact skin seems 
sufficient to prevent any NM penetration into the body by this route. No human study to date has 
shown nanomaterials to have carcinogenic effects. While the current in vitro toxicity assessment 
methods need better validation before they are used in the case of nanomaterials, all in vivo 
methods would be applicable to the study of nanomaterials, with certain modifications, such as a 
detailed characterization of the particles. 
 

The main NM-related safety risks are fire-explosion and the catalytic effect. The relative 
intensity of a fire or an explosion in relation to fine particles of the same material is variable; in 
the case of aluminium, this relative intensity is lower, due to the surface oxide layer, while it is 
similar for carbon black and carbon nanotubes (CNT). The increase in the specific surface of 
nanomaterials favours the catalytic effect and could lead to unexpected violent reactions. 
 

2.1.2 Metrology 

The “best practices guide favouring management of the risks related to synthetic nanoparticles” 
by Ostiguy et al. [1] serves as the reference for this section. In this document, the authors 
indicate that it is important to “characterize NP emissions and assess, as a minimum, the particle 
number concentration, granulometric distribution, specific surface and chemical composition”. 
The authors of the report thus indicate that “no instrument at the present time can produce a 
specific analysis of NPs to determine all the relevant characteristics of exposure to synthesized 
NPs.” A table showing examples of instruments and techniques allowing characterization of 
aerosol NPs is presented in the best practice guide. Condensation Particle Counters (CPC) 
particularly allow determination of the particle number concentrations and real-time 
concentrations of fine and ultrafine particles, while the Electrical Low Pressure Impactor (ELPI) 
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and the Scanning Mobility Particle Sizer (SMPS) can determine a set of parameters, such as 
numerical, mass and specific surface granulometric distributions. However, it remains that many 
technical constraints do not allow efficient measurement of all these parameters [1]. Other 
spectrometers are also available, notably the Fast Mobility Particle Sizer (FMPS), the Engine 
Exhaust Particle Sizer (EEPS) and the Universal NanoParticle Analyzer (UNPA) [30, 31]. These 
instruments, which are still being assessed [32-36] continue to be bulky, expensive instruments, 
difficult to use in a worker’s respiratory zone. A recent review of the various instrument types is 
presented by Kuhlbusch et al. [37]. In the past few years, some miniaturized instruments, which 
can be placed in respiratory zone, have emerged for NM assessment, including the UNC passive 
dosimeter, perfected at the University of North Carolina at Chapel Hill [38], the Aerasense – 
Phillips NanoTracer® [35, 39, 40], the DiSCmini® Diffusion Size Classifier [35, 41, 42] and a 
thermal precipitator [43]. 
 
In addition to the NM concentration assessment, some studies seek to characterize the nature of 
the particles involved and the chemical and physical processes of their formation. Several studies 
thus have attempted to identify the chemical composition and morphology of UFPs in the 
manganese alloy fabrication industry [44], oil refineries [45] and stainless steel welding fumes 
[46]. Some have also addressed the mechanisms producing UFPs during abrasion [47, 48] and 
during laser ablation of paint films [49], while others have focused on the electrical discharge 
machining (EDM) die-sinking process [50] or the carbon nanotube industry [51-54]. Some 
authors present the need to establish NM generation potential by standardized tests [55, 56]. A 
last study analyzes the respective advantages of scanning electronic microscopy versus 
transmission electronic microscopy for NM characterization [57]. Finally, Hameri et al. [58] 
presented the main chemical and physical processes of NM formation and coagulation. 
 
2.1.3 Nanoparticle Exposure 

Three recent literature reviews on NP occupational exposure include many publications on the 
subject. These reviews are by Kaluza et al. [10], published in 2009, Brouwer [59] published in 
2010, and Kuhlbusch et al. [37], published in 2011. Workplace studies and simulations of 
laboratory working conditions are listed in the reviews. These studies cover a wide range of 
materials, including carbon black, various metal and metalloid oxides (titanium, silicon, zinc, 
aluminium, cerium, manganese, etc.), silver, aluminium, organic clay, fullerenes and nanotubes 
(single-walled and multiwalled) and carbon nanofibres. Following these three publications, 
several others have been added on carbon nanotubes and the composites that contain them [60-
63], metal and metalloid oxides [64-70], silver and aluminium NPs [71], carbon black [69], 
nanocellulose [72] and gold and cadmium selenide quantum dots (boxes) [73]. Whether in 
workplace exposure assessments or laboratory simulations, Kuhlbusch et al. raise several 
deficiencies that make it difficult to compare the results of the various studies, mainly including: 
1) the lack of a harmonized approach concerning the strategies and instrument methods, the 
parameters measured, the dimensional ranges used and the data analysis procedures, 2) the 
absence of indication of uncertainty and the instrumentation detection limits, and 3) the absence 
of precision regarding the contribution of other sources to the concentrations measured [37]. 
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2.1.4 Ultrafine Particle Exposure 

The publication by Schneider et al. [9] is the only recent literature review listed on occupational 
UFP exposure. A summary of the different exposure levels associated with various activities, 
such as several types of soldering, machining and metal welding, some smelting activities, and 
even bread baking, are presented. Of greater interest to our research is the presentation of results 
of an assessment in an aluminium electrolysis plant or in welding processes. A preliminary study 
by the Oslo-based National Institute of Occupational Health clearly shows that several types of 
arc welding are major sources of UFP number concentration, reaching 1.6·106 particles/cm3 
(measured with an SMPS). In the study by Thomassen et al. [19], fixed-station measurements 
also indicate high UFP number concentrations (3·105 particles/cm3) during anode changes.  

 

Since Schneider’s literature review in 2007, many other publications have been released on UFP 
exposure. Thus, we find articles concerning metal machining and grinding [17, 74-76], 
firefighting [27], smelters [17, 18, 74, 77], precious metal refining [78], thermal spraying [79], 
the atmosphere inside automobiles [80, 81] or buses [82-85], bus garage mechanics and 
supervisors [85], pressurized metal casting [86, 87], restaurant cooking [86, 87], a diesel engine 
laboratory [86], sanding plywood and medium-density fiberboard (MDF) [88], asphalt 
production and spreading [89], polytetrafluoroethylene (PTFE) clothing manufacturing [90], 
operation of electric motors [91], the work of highway tollbooth attendants [92], commercial 
buildings [59, 93] operation of laser printers [94, 95], and school environments [96-98]. More 
interesting for our research are the various publications concerning metal welding [17, 99-102], 
in which the UFP number concentrations during MIG (Metal Inert Gas) welding of steel or 
aluminium range from 1.1·104 particles/cm3 to 7·105 particles/cm3, depending on the studies. 
 
2.1.5 Means of Controlling Exposure 

Ostiguy et al. “recommend that the means of control used allows NP dispersion in the air and on 
work equipment to be circumscribed as much as possible, in order to avoid exposing workers” 
[1]. According to one experiment in a testing booth, the capture efficiency of a suction source 
system would not vary for NP sizes between 4 and 100 nm. In addition, a study by the NIOSH 
conducted with suction nozzles, such as those used in welding, indicates a 74% to 76% reduction 
of the NP mass concentration between 15 and 50 nm [10]. 
 
Tsai et al. [103] and Cena et al. [62] indicate that handling of aluminium NPs, silver NPs or 
carbon nanotubes (CNT) under a hood can lead to high NP exposures. The turbulence created by 
the person’s body in front of the hood would be at the origin of this exposure during the use of 
conventional hoods. Air curtain hoods would significantly reduce this type of exposure [71]. A 
suction nose used to clean tanks for a pilot project fabricating NPs of various metals (iron, 
copper, zinc, etc.) proved efficient in reducing exposure by 76% to 100% in the operator’s 
respiratory zone [67]. 
 
The use of N95 and P100 filtering face pieces is very widespread in the NP industry. All the 
commercially available models are "Electret" models, in which the electrostatic effect is adding 
to the filtering mechanisms, such as diffusion, recognized as the most important mechanism for 
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nanosized particles. With these types of respiratory protective devices (RPD), the tests indicate 
that the particles penetrating the filtering materials more easily range in size between 30 and 70 
nm [1]. However, the possibility that particles smaller than 10 nm also have high penetration due 
to the thermal rebound phenomena still has to be elucidated [104-106]. The need for better 
characterization of the penetration mechanisms and the leakage effects at the RPD contact points 
with the skin is recognized by several researchers [106-109]. 
 
The information concerning the efficiency of conventional skin protection for nanomaterials is 
much rarer. The use of protective equipment (suits and gloves) made of synthetic fibres is to be 
preferred, even if their efficiency is not yet proved for NPs [106]. 
 
2.1.6 Risk Management 

Several NP risk analysis and management guides have been published in the past few years but, 
on the whole, these documents arrive at similar treatment as for fine particles or toxic materials 
in general [1, 10, 108, 110-112]. Control banding methods are proposed by several authors [10, 
113-115], while an information gathering model, which should accompany every NP exposure 
measurement, is presented by Woskie et al. [116]. An analysis of the NP Material Safety Data 
Sheets (MSDS) seems to indicate that information varies greatly from one manufacturer to 
another and that, in general, the information found in these MSDS is similar to that of analogous 
materials (graphite for CNT or fine particles of the same molecule) [9]. More generally, based on 
the precautionary principle and the deliberations of the European NanoCap1 project, van 
Broekhuizen proposes a six-step risk management approach: 1) reporting of the quantity and 
type of NPs in the products, 2) creation of a national register of workers potentially exposed to 
nanomaterials, 3) transparency in communication of known and uncertain risks, 4) establishment 
of exposure limit values, 5) deployment of an early warning system for the first signs of 
occupational diseases, and 6) approval before marketing of any application of nanotechnologies 
and nanomaterials as a central element of a regulatory oversight policy [117]. A similar 
approach, but more specific to NP use in pesticide manufacturing, is presented by Stone et al. 
[118].  
 
2.1.7 Regulation, Programs, Standardization and Guides 

To date, no government seems to have specific environmental health and occupational health 
regulations concerning NPs and UFPs. In Europe, the laws and regulations applicable to these 
particles are those associated with hazardous materials such as REACH, Seveso II and various 
environmental directives [10]. In the United States, in addition to the current scientific 
uncertainty regarding the properties of these particles, various administrative and legal 
constraints would prevent this government from establishing such regulations and laws in the 
near future [115, 119, 120]. There is the EPA’s voluntary participation program, the Nanoscale 
Materials Stewardship Program [121], but in view of the participation rate and the confidentiality 
needs of the participating companies, there are strong doubts regarding its credibility [115, 122]. 
However, some European proposals exist for exposure limit values (ELV), one coming from the 
                                                 
1  www.nanocap.eu 
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Organisation for Economic Cooperation and Development (OECD), two from Germany’s 
Federal Institute for Occupational Safety and Health (BAuA), four from the Institute for 
Occupational Safety and Health of the German Social Accident Insurance (IFA), and four from 
the British Standards Institution (BSI) [113, 123, 124]; all these proposals are preliminary due to 
the incomplete nature of the available information. The NIOSH has also made preliminary 
proposals for carbon nanotubes and nanofibres [125] and titanium dioxide [126]. All these ELVs 
are mass concentration values except for two from the IFA for biopersistent granular materials 
[113]. 

 

While the U.S. Government’s financial support for NP-associated health research is often 
considered insufficient [122, 127] by the American scientific community, the European 
Commission subsidizes many research programs, such as NANEX and NANODEVICE, under 
its 7th Framework Programme [10]. Other agencies, such as the World Health Organization 
(WHO) and the OECD are interested in the subject and offers their support to several initiatives 
[10]. OECD work [128], such as “Report of the Workshop on Risk Assessment of Manufactured 
Nanomaterials in a Regulatory Context” and “Preliminary Analysis of Exposure Measurement 
and Exposure Mitigation in Occupational Settings: Manufactured Nanomaterials” can be 
consulted on that body’s website2. 

 

The European Committee for Standardization (known as CEN), via its committees, CEN/TC137 
and CEN/TC352, and the International Standards Organization (ISO), via its committees 
ISO/TC229 and ISO/TC146/SC 2, are working on the creation of standards concerning NPs. 
Currently, among those already published, two are related to exposure measurement [129, 130], 
while a third presents a risk analysis process [131], a fourth deals with safe work methods [132], 
and a fifth deals with terminology and definitions of nano-objects [133]. 

 

Among the European projects in progress that are more NP-specific, NANODEVICE is seeking 
to design and perfect portable, easy-to-use devices for NP measurement and characterization3, 
while NANEX intends to produce a list of exposure scenarios for manufactured nanomaterials, 
covering their life cycle and including work scenarios. A summary of NANEX’s approach is 
presented in a series of documents called “Work Packages - (WP2-Development of Generic 
Exposure Scenario Descriptions, WP7-Scientific Integration and Gap Analysis et WP3-
Occupational Exposure Scenarios)”4, and examples of work exposure scenarios are presented on 
the same website5.  

                                                 
2  http://www.oecd.org/findDocument/0,3770,en_2649_37015404_1_119666_1_1_1,00.html 
Consulted 2011-06-21 
3 http://www.nano-device.eu/ Consulted 2011-06-21 
 
4 http://www.nanex-project.eu/index.php/public-documents/cat_view/43-dissemination-
reports/74-wps-reports Consulted 2011-06-21 
 
5 http://www.nanex-project.eu/index.php/exposure-scenarios-db Consulted 2011-06-21 
 

http://www.oecd.org/findDocument/0,3770,en_2649_37015404_1_119666_1_1_1,00.html
http://www.nano-device.eu/
http://www.nanex-project.eu/index.php/public-documents/cat_view/43-dissemination-reports/74-wps-reports
http://www.nanex-project.eu/index.php/public-documents/cat_view/43-dissemination-reports/74-wps-reports
http://www.nanex-project.eu/index.php/exposure-scenarios-db
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3.OBJECTIVE OF THE STUDY 

The main objective of this research was to assess occupational UFP exposures in welding 
schools and aluminium smelters. In addition, the research examined exposure levels among NP 
producers and users.  
 
The secondary objective was to examine the overall capabilities for assessing occupational NP 
and UFP exposures in an industrial and laboratory context.  
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4.METHODOLOGY 

4.1 Metrology and Assessment Strategies 

Two main types of assessment were performed during this research: assessment of NM particle 
number concentrations and granulometric distributions.  
 
The fine and ultrafine particle concentrations were assessed with particle counters (P-Trak, 
model 8525) made by TSI Inc. These are portable condensation particle counters for particles 
ranging from 20 nm to 1 µm in a concentration range of 0 to 500,000 particles/cm³. This 
instrument presents the advantage of providing real-time information and being easy to use and 
transportable. 
 
The second assessment concerns fine and ultrafine particle size distribution with an Electrical 
Low Pressure Impactor (ELPI), made by the Finnish company Dekati Ltd. This low pressure 
impactor with real-time electrical detection allows analysis of aerosols in the 7 nm to 10 µm 
range. These limit sizes can vary according to the configuration used. The ELPI data is expressed 
in standardized concentrations dN/dlogDp. The ELPI also allows collection of the particles 
deposited in the impactor for microscopic characterization analysis. Three different 
configurations were used in this study. Table 1 presents the cutpoint diameters for each stage, 
according to the configurations 1) sampling with filter stage, 2) sampling without filter stage, and 
3) collection. In particular, these real-time granulometric measurements will allow confirmation 
and assessment of the presence of nanomaterials in aersosols. 
 
The P-Trak particle counters were supplied by the occupational hygiene laboratory of the 
Université de Montréal and the ELPI was supplied by the IRSST. 

Table 1 – Cutpoint diameters (μm) for each ELPI stage, depending on the configuration 
used  

Configuratio
n 

Sampling 
with filter 

stage 

Sampling 
without filter 

stage 

Collection 

Stage µm 

1 5.982 6.351 6.710 
2 2.937 3.796 4.010 
3 1.861 2.272 2.400 
4 1.172 1.524 1.610 
5 0.725 0.902 0.953 
6 0.433 0.583 0.616 
7 0.262 0.321 0.384 
8 0.145 0.214 0.263 
9 0.070 0.098 0.156 
10 0.039 0.050 0.093 
11 0.027 0.030 0.055 
12 0.018 0.024 0.028 
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Different assessment strategies were used in this project, depending on certain requirements of 
the sampled environments and the measuring instruments. Fixed-station assessments and “quasi-
personal” assessments thus were performed for both types of measurements. “Quasi-personal” 
measurements are defined in this report as measurements taken as close as possible to the 
workers’ breathing zone, by a technician or a hygienist.  
 
4.2 Study Environments 

Table 2 presents the list of study environments, the particle types assessed and the types of 
measurements taken.  
 

Table 2 – Study environments 

Description Particle type Types of measurements
Welding school A UFP Concentration/Distribution 
Welding school B UFP Concentration 

Aluminium smelter UFP Concentration/Distribution/TEM-EDS 
Thermoplastic UFP and CNT Concentration 

Laboratory A/NP production  Aluminium/copper NP Concentration 
Laboratory B/nanocomposites CNT Concentration 
Laboratory C/nanocomposites CNT Concentration 

UFP: ultrafine particles 
NP: nanoparticles  
CNT: carbon nanotubesTEM-EDS: Transmission Electron Microscopy coupled with Energy-
Dispersive Spectrometry  
 
4.2.1 Welding Schools 

Exposure level assessments were performed in two welding schools in the Montréal region 
(Schools A and B). These assessments were spread over a 16-month period. For School A, 
particle size concentration and distribution assessments were performed for the following five 
processes: Shielded Metal Arc Welding (SMAW), Flux Cored Arc Welding (FCAW), Gas Metal 
Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW) and oxygen cutting. For School B, 
particle concentration assessments were performed for the following three processes: SMAW, 
FCAW and GMAW. In both schools, the arc welding processes were performed under inert gas 
(MIG/TIG) and the students worked in booths of about 1.50 m by 1.80 m, equipped with a local 
ventilation system. The number of students per group varied, but ranged between 15 and 25 
students. Several groups could also work at the same time in different sections of the premises, 
without any physical separation between them.  
 
The particle size concentration and distribution measurements were performed directly in the 
students’ booths, at a distance within 50 cm of the welding zone. Although non-personal, the 
sampling method can be considered as quasi-personal assessment because of close confines of 
the zone.  
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4.2.2 Aluminium Smelter 

Two sampling campaigns were conducted in an aluminium smelter in the Province of Québec. 
Particle size concentration and distribution measurements were taken. Two primary aluminium 
production processes were assessed, the Soderberg process and the prebaked anode process. 
These are two Hall-Héroult electrolytic reduction processes. The Soderberg process uses a paste 
of petroleum coke and pitch, placed in hoppers with their ends submerged in molten alumina-
cryolite bath, while the second process uses prebaked anodes [134]. 
 
The plant assessed under this project is being converted and has begun dismantling the 
Soderberg potlines to replace them with prebaked anode production lines. The two types of 
processes assessed are located in contiguous buildings separated by physical barriers, rendering 
the processes independent. The workers were grouped by similar exposure group according to 
the trade titles. The Soderberg process groups assessed were: 1) drivers who deposit the 
briquettes; 2) frame lifters; 3) employees who break the crusts of the electrolytic baths; 
4) pressurized overhead crane operators; 5) maintenance employees. The prebaked anode process 
groups assessed were: 1) pressurized overhead crane operators; 2) anode transport truck 
(“Berger”) drivers; 3) auxiliary truck (“mule”) drivers; 4) maintenance employees. The carbon 
anodes from the prebaked anode process are assembled directly in the plant. In our study, this 
department, called the Anode Sealing Department, was also assessed and classified in two 
sections: hexapod cleaning (spent anode), and hexapod and carbon section sealing.  The workers 
in these departments are the hexapod cleaning and sealing attendants. In connection with these 
facilities, the two spent anode cooling rooms (“cemetery”) were also studied.  
 
The particle concentrations in the potrooms were mapped for both processes and for the two 
anode cooling rooms. Stationary measurements representative of the exposure of the truck 
drivers and overhead crane operators were also taken during work periods of 1 to 2 hours. Quasi-
personal measurements were performed in the Anode Sealing Department for the cleaning and 
sealing attendants, in the Soderberg process for the maintenance attendants and the employees 
who break the crusts of the electrolytic baths, and in the prebaked anode process for the 
maintenance employees. All these measurements were taken during periods of 1 to 2 hours.  
 
A UFP analysis was performed on a JEOL Transmission Electron Microscope (TEM), model 
JEM-2100F, in both processes. This microscope is equipped with a Field Emission Gun (FEG), 
operating at 200 kV. It has maximum image resolution of nearly 1 Angstrom. Polycarbonate 
filters and analysis grids were used on the five finest stages of the ELPI. The analysis grids were 
glued to the substrates with a standard liquid adhesive. The particles were photographed without 
any modification to the grids that served to collect the nanoparticles. Chemical composition 
analyses were also performed with an Oxford Energy Dispersive Spectrometer (EDS).  
 
4.2.3 Thermoplastic Processing Industry 

Assessments were performed in the materials innovation research centre of a thermoplastics 
processing company. The plant evaluated under this study is not yet at the stage of producing 
materials incorporating NPs, because it is a research centre with the goal of developing products 
containing nanoparticles that give plastics certain interesting properties, such as thermal 
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conductivity and strength. The research centre is composed of offices, a meeting room, a quality 
control laboratory and two rooms, one of which is used for plastics manufacturing. This first 
room is divided into two parts (storage and processing), separated by an unsealed physical 
barrier. The other room, called the “pool”, is not currently used by the research centre. The two 
rooms are not ventilated mechanically, while the rest of the premises are.  
 
The process tested was a twin screw extruder fed with polyethylene granules. Multiwalled CNT 
fractions were injected into the single screw as additives to the polyethylene. Baytubes® Carbon 
Nanotubes (C150HP) made by Bayer Material Science (BMS) were used [135]. These 
agglomerated nanotubes were larger than 100 micrometres, giving them limited potential 
inhalation exposure, according to the company [136]. 
 
Background measurements were taken with three P-Trak particle counters, model 8525, made by 
TSI, in the centre’s different rooms. Measurements were taken on Monday morning after a 
shutdown of several days, and then new measurements were taken during operation of the 
extruder, with and without CNTs. Stationary and quasi-personal measurements were taken.  
 

4.2.4 University Laboratories Producing or Using Nanoparticles 

Measurements were taken in three university research laboratories producing or using NPs. 
 
Laboratory A 
The process used by the first laboratory mills aluminium/copper particles in liquid nitrogen. The 
objective of the process is to reduce the size and spacing of the particles. A 10-litre mill 
operating by attrition with a continuous flow of liquid nitrogen is used. The mill consists of 
stainless steel balls, particles and liquid nitrogen. Thermocouples control the mill temperature (-
195ºC) and the liquid nitrogen level. The evaporated liquid nitrogen is routed into a hood 
equipped with a particle filter. An operator collects a sample every hour, necessitating partial 
dismantling of the mill. The initial particles have a mean diameter of 100 µm. After the first day, 
the particles were flattened but the size remained the same. It was only after the second day that 
the mean diameter diminished to a size of 10 to 20 µm, and then by 15 nm after the 3rd day of 
milling. 
 
Stationary measurements of fine and ultrafine particle concentrations were taken near the mill (< 
1 m) and 3 metres from the mill. Three days of sampling covering the entire milling process were 
performed.  
 
Laboratory B 
The second laboratory is a nanocomposite fabricating laboratory. Several tasks are performed in 
this laboratory. The assessed process consists of placing a CNT suspension in a solvent, styrene. 
The solution is mixed in a glove box (main chamber) equipped with a transfer box. The 
nanoparticle weighing steps and the incorporation of the nanoparticles into the styrene are 
performed in the main chamber.  
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Stationary measurements of the fine and ultrafine particle concentration were taken near the 
glove box during CNT handling (<1 m) and 3 m away from the glove box, with two P-Trak 8525 
particle counters. 
 
Laboratory C 
The third laboratory uses CNTs to reinforce and modify the electrical properties of certain 
polymers. Nanoparticles are handled at two distinct locations in the laboratory. The CNT 
powders are handled in a glove box equipped with a vacuum. When the nanotubes are integrated 
into the polymer, the handling operations are performed under a hood. General ventilation is 
present in the laboratory. Multiwalled Baytubes® Carbon Nanotubes (C150P) made by Bayer 
Material Science (BMS) were used [135]. Background measurements were taken with two P-
Trak 8525 particle counters and one DustTrak 8520 particle counter in the two locations were 
NPs are handled. The concentrations were measured inside the glove box and under the 
laboratory hood during certain tasks related to NP integration into the polymer (weighing, 
handling powders) and related to different tests on the polymers formed (breaking, polishing, 
scratching, drying). 
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5.RESULTS 

 
5.1 Welding Schools 

5.1.1 School A 

The concentrations in School A before the welding operations began were lower than 10,000 
particles/cm³. Concentrations over 50,000 particles/cm³ were measured for all processes 
combined (Table 3 and Figure 1). The oxygen cutting process generated the most particles 
(300,000 particles/cm³ on the average), followed by GMAW on aluminium (160,000 
particles/cm³), GTAW on aluminium (117,000 particles/cm³), FCAW on aluminium (116,000 
particles/cm³), GTAW on stainless steel (94,000 particles/cm³), GMAW on steel (89,000 
particles/cm³) and SMAW (61,000 particles/cm³). For the same process, concentrations 
differences were measured, depending on the metal used, for GTAW and GMAW. In both cases, 
when aluminium was used, the highest particle concentrations were measured. 
 
For each measurement, concentration profiles were obtained. Three of these profiles are 
presented in Figures 2, 3 and 4. These profiles tell us that the students essentially are exposed to 
peak concentrations. Figure 3, recorded during the GMAW on aluminium process, also indicates 
that the maximum of 500,000 particles/cm³ was reached many times.  
 
The particle size distribution assessments, presented in Figure 5, show differences among the 
processes. The GMAW process generated the biggest particles and FCAW essentially generated 
nanoscale particles. However, for the four processes tested, over 60% of the particles were 
nanoscale and bimodal distributions were identified, with the first mode between 20 and 30 nm 
and the second between 200 and 300 nm. 
 

Table 3 – Mean concentrations (particles/cm³) measured in the two welding schools 

Processes School A School B 
GMAW Aluminium: 160,000 (7) 

Steel: 89,000 (10) 
- 

Steel: 92,000 (26) 
FCAW 116,000 (6) 114,000 (31) 
GTAW Aluminium: 117,000 (15) 

Stainless steel: 94,000 (6) 
- 
- 

SMAW 61,000 (16) 177,000 (14) 
Oxygen cutting 300,000 (6) - 

(x): Number of samples for each process and for each school. Each sample is a mean concentration over a period 
ranging from 30 minutes to 2 hours. 
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Figure 1 – Mean concentrations and typical errors measured with the P-Trak particle 

counters for the welding processes of Schools A and B (school indicated in parentheses) 
 
 

 
 

Figure 2 – Profile of concentrations recorded during one day of sampling for the SMAW 
process of Welding School A 

 
 



IRSST -  Characterization and Control of Occupational Exposure to Nanoparticles and Ultrafine 
Particles 

17

 

 
Figure 3 - Profile of concentrations recorded during one day of sampling for the GMAW 

on aluminium process of Welding School A  
 

 
Figure 4 - Profile of concentrations recorded during 30 minutes of sampling for the SMAW 

process of Welding School A  
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Figure 5 – Particle size distribution for the welding processes of School A 

 
5.1.2 School B 

The concentrations measured in School B before the welding operations began were lower than 
10,000 particles/cm³. Concentrations higher than 50,000 particles/cm³ were measured for the 
three processes assessed (Table 3 and Figure 1). Contrary to School A, the concentrations 
measured during the SMAW processes (177,000 particles/cm³) were the highest, followed by 
FCAW (114,000 particles/cm³) and GMAW on steel (92,000 particles/cm³). The concentration 
profiles also show many peak concentrations, even though these peaks are less prominent for the 
SMAW process, with concentrations always higher than 100,000 particles/cm³ during the 
welding periods (see black lines, Figure 6). 
 

 Figure 6 – Profile of concentrations recorded during one day of sampling for the SMAW 
process of Welding School B 
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5.2 Aluminium Smelter 

The particle concentrations outside the plant were also lower than 7,000 particles/cm³. The mean 
particle concentrations measured with the P-Trak during mapping were 144,000 particles/cm³ in 
the Soderberg process, 70,000 particles/cm³ in the prebaked anode process and 238,000 and 
44,000 in the anode cooling rooms (Table 4). It should be noted that in Anode Cooling Room B, 
there were anodes coming out of the electrolytic baths; these were hot anodes. In Room A, some 
anodes had been in this room for at least 12 hours; these were lukewarm or cold anodes. Figure 7 
presents the geometric means (GM) of the same background measurements for the two 
processes. The GM of the Soderberg process in Room A is about three times higher than the GM 
of the prebaked anodes, and the 5th and 95th measurement percentiles indicate a wider range in 
the prebaked anode process, a sign of greater variability. The geometric standard deviation 
(GSD) for the prebaked anodes is 2.6, while the GSD of the Soderberg process is only 1.7. 
 
 
 
 

 
GM: Geometric mean 
 

Figure 7 – Particle concentrations in the Soderberg and prebaked anode processes 
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Table 4 – Descriptive statistics of the particle concentrations (particles/cm³) measured with 
P-Trak particle counters during mapping of the Soderberg and prebaked anode processes 

and in the anode cooling rooms 

 Soderberg 
process 

Prebake
d anode 
process 

Cooling Room 
A 

Cooling Room 
B 

n  137 205 24  20  
Mean 144,000 70,000 44,000  238,000  

Maximum  450,000 500,000 120,000  500,000  
Minimum  7,000 15,000 22,000  76,000  

GM 123,000 42,000 37,000  213,000  
GSD 1.7 2.6 1.7  1.6  

* The background noise concentrations were lower than 7,000 particles/cm³ 
GM: geometric mean 
GSD: geometric standard deviation 
 

 

Table 5 – Descriptive statistics of particle concentrations (particles/cm³) measured with P-
Trak particle counters during quasi-personal measurements in i) the Soderberg process 

and ii) the prebaked anode process 

 

i  Soderberg 
Trades  Overhead crane 

operator 
Maintenance Crust breaker Frame lifter operator Briquette driver

N 4 11 3 5 4 
Mean 16,000 123,000 186,000 100,000 67,000 

Maximum 22,000 209,000 251,000 131,000 159,000 
Minimum 14,000 53,000 125,000 70,000 14,000 

GM      16,000 113,000 178,000 97,000 47,000 
GSD 1.2 2.0 1.4 1.3 2.7

ii Prebaked anode process 

Trades Overhead crane 
operator 

Mainte-
nance 

Mule driver Anode transport 
driver 

Sealing Hexapod 
cleaner

N 3 12 6 5 10 7 
Mean 29,000 99,000 74,000 17,000 62,000 79,000 

Maximum 46,000 217,000 113,000 31,000 131,000 133,000 
Minimum 10,000 16,000 28,000 6,000 27,000 25,000 

GM       24,000 83,000 66,000 14,000 55,000 70,000 
GSD 2.2 2.0 1.7 1.9 1.7 1.8 

* The background noise concentrations were lower than 7,000 particles/cm³ 
GM: geometric mean 
GSD: geometric standard deviation 
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Concerning quasi-personal measurements, the concentrations were also higher in the Soderberg 
process than in the prebaked anode process. The GM of the concentrations for the workers who 
break the crusts of the electrolytic baths was 178,000 particles/cm³, followed by maintenance 
employees with 113,000 particles/cm³ and then frame lifters with 97,000 particles/cm³. The 
exposure of overhead crane operators was lower than for the other workers in the Soderberg 
process (Table 5).  
 
Anode transport drivers (GM=14,000 particles/cm³) had the lowest concentrations in the 
prebaked anode process, followed, in ascending order, by pressurized overhead crane operators 
(GM=24,000 particles/cm³), the workers who seal the anodes (GM=55,000 particles/cm³), mule 
drivers (GM=66,000 particles/cm³), hexapod cleaners (GM=70,000 particles/cm³) and 
maintenance employees (GM=83,000 particles/cm³). 
 
Table 6 presents the proportions of particles measured for each of the 12 stages of the ELPI 
impactor for the Soderberg and prebaked anode processes. The mean aerodynamic diameter of 
the particles collected in the two processes was smaller than 30 nm. In addition, very high 
proportions (>97%) of the particles had an aerodynamic diameter smaller than 98 nm in the two 
processes. 
 
Figure 8 indicates that the fine fractions were bigger in the prebaked anode process when the 
doors were open. In addition, Figure 9 shows granulometric distribution differences depending 
on the temperature of the anodes in the cooling rooms. The curves cross each other, which 
indicates that, despite the concentration differences measured, granulometric distribution 
differences were also identified. Thus, when the anodes came out of baths, as very hot anodes, 
they generated high concentrations of airborne nanoscale particles, while when they were cold, 
larger particles had been measured (>100nm).  
 
The results of the analyses performed on the TEM/EDS are presented in Table 7. The main 
elements detected are ranked in descending order for the five smallest stages of the ELPI. 
Overall, Al, Na and F are the elements found most often in the analyses, and particles 
simultaneously containing the elements Al, Na and F are the most common in both processes, 
with respective proportions of 69% in the prebaked anode process and 54% in the Soderberg 
process. Particles containing Ti were also identified, with proportions of 9% (prebaked anodes) 
and 33% (Soderberg). We should also note the presence of arsenic in both processes. In addition, 
25% (prebaked anodes) and 31% (Soderberg) of the particles examined were fibres and were 
identified in the five stages of the ELPI. Fibrous particles are presented in Figures 10 and 12; 
they contain the elements Al and Na (the C, Si, O and Cu peaks are specific to the substrate and 
the grid). Other spherical or irregularly shaped particles are presented in Figures 11, 13 and 14. 
These particles contain the elements Ti (Figure 11), Al, F, Na, S (Figure 13) and Al, Na, S, As 
(Figure 14). 
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Table 6 - Proportions of particles in the ELPI stages (sampling without filter stage) for the 

Soderberg and prebaked anode processes 

Cutpoint stages in 
nm 

Proportion of particles (%) 

 Soderberg 
process 

Prebaked anode process 

24 42 77 
30 32 18 
50 19 3 
98 4 <1 

214 1 <1 
321 <1 <1 
583 <1 <1 
902 <1 <1 
1524 <1 <1 
2272 <1 <1 
3796 <1 <1 
6351 <1 <1

 

 

 

Figure 8 - Comparison of particle granulometric distributions based on opening of the 
potroom doors in the prebaked anode process 
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Figure 9 - Comparison of particle granulometric distributions based on the temperature of 
the anodes in the cooling rooms 

 

 

Table 7 – Main ultrafine elements detected during TEM/EDS analyses in the two 
electrolysis processes 

 ELPI, cutpoint diameters in nm (setup in “collection” mode) 
 28 55 93 156 263 

Soderberg 
process 

 

Ti, Fe, Al, 
Na, S, K, F, 

Ca 

Al, Na, K, 
Ti, S, Fe, Ca, 

F 

Ti, S, Fe, Na, 
Al, K, Na, Ca

Al, Na, F, K, 
S, Cl, Ti, As

Al, Na, F, S, K, 
Fe, Ti, As, Cl, 
V, Au, Pb, Zn 

Prebaked 
anode 

process 
 

Al, Na, F, 
K, S, Fe, 
Mn, Ti 

Al, Na, F, K, 
S, Ti, As 

Al, Na, F, K, 
S, Fe, Ti 

Al, Na, F, K, 
Ti, S, Fe, 

Mn 

Na, Al, F, K, S, 
Ti, As, Cl 
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Figure 10 – Prebaked anode process sample from the ELPI 28 nm stage  

 

 
 

 

Figure 11 –Soderberg process sample from the ELPI 28 nm stage 

Figure 12 – Prebaked anode process sample from the ELPI 93 nm stage 
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Figure 13 - Soderberg process sample from the ELPI 156 nm stage 

 

Figure 14 – Prebaked anode process sample from the ELPI 156 nm stage 
 
5.3 Thermoplastic Processing Industry 

High particle levels were measured in the storage and processing rooms, even after several days 
of shutdown of the facility. Table 8 presents the concentration results from mapping of the 
premises and indicates mean concentrations of 8,100 (P-Trak#1) and 9,160 (P-Trak#2) 
particles/cm³ in the storage room and 11,200 (P-Trak#1) and 13,500 (P-Trak#2) particles/cm³ in 
the processing room. By way of comparison, the concentration was around 1,500 particles/cm³ 
outside the building, 1,200 particles/cm³ in the meeting room and 900 particles/cm³ in the 
ventilated quality control laboratory. Figure 15 presents the continuous profile of particle 
concentrations measured during the visit to the premises before operation of the extruder.  
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Table 8 – Mean particle levels in the storage and processing rooms 

 Mean [min-max]  particle 
concentrations (particles/cm³) in the 
storage room (n) 

Mean [min-max] particle concentrations 
(particles/cm³) in the processing room 
(n) 

P-Trak #1 8,100 [7,800-8,900] (8) 11,200 [10,000-12,500] (9) 

P-Trak #2 9,160 [8,500-9,500] (8) 13,500 [12,000-14,000] (9) 

 
 

 

Figure 15 – Profile of particle concentrations measured in the research centre’s different 
rooms 

 
During operation of the extruder, a substantial increase in particle levels was observed in the 
storage and processing rooms, with concentrations reaching 100,000 particles/cm³ at a distance 
of 3 metres from the extruder. Figure 16 presents the particle concentrations measured from 11 
a.m. to 3 p.m. with extruder startup at 1:50 p.m. During this recording period, a reduction in the 
concentrations was also recognized between 11:30 a.m. and 1:30 p.m., resulting from provoked 
aeration (opening of the windows) of the storage and processing rooms, where the levels fell 
from 13,000 to 3,500 particles/cm³. 
 
Figure 17 presents the recording of the quasi-personal particle concentrations during CNT 
preparation and during extruder startup. There was no change in the particle concentrations 
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during CNT handling, while a net increase in the concentrations was observed during extruder 
startup.  
 
The mean particle concentration measured in the absence of CNTs at a one-metre distance from 
the extruder was 288,912 particles/cm³, while a mean concentration of 227,430 particles/cm³ was 
measured during operation of extruder with CNTs.  
 

 

Figure 16 – Particle concentrations measured in the processing room 
 
 

 

Figure 17 – Quasi-personal particle concentrations measured during CNT handling and 
extruder startup 
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5.4 University Laboratories Producing or Using Nanoparticles 

5.4.1 Laboratory A 

The levels measured in the cryomilling process are low and are identical or close to the 
laboratory’s background noise concentrations (between 4,000 and 6,000 particles/cm³). Figure 18 
presents the concentrations measured during milling, dismantling of the mill and handling of the 
powders, and in the gas plume released by the liquid nitrogen. The highest concentrations were 
measured in the gas plume concentrations of liquid nitrogen, at more than 10,000 particles/cm³. 
Slightly higher concentrations were also measured on the 3rd day of sampling.  
 

 
 Figure 18 – Particle concentrations in the aluminium/copper nanoparticle production 

laboratory (Laboratory A) 
 

Figure 19 presents the particle concentration profiles near the mill (i) and 3 metres from the mill 
(ii), measured with the P-Trak particle counters on the 3rd day of sampling. Short peak 
concentrations are visible in the two profiles during each collection, i.e. at 10:50 a.m., 12 noon, 1 
p.m., 2 p.m., 3 p.m. and 4 p.m. Only the complete dismantling stage (between 5 p.m. and 5:30 
p.m.) shows differences between the two sampling stations, with peak concentrations close to the 
source but none 3 m away. It must be noted that the hourly collections were placed on the floor 
between the two measuring zones. A decrease in concentrations is also recognized during the day 
in Figures i and ii, attributable to an overall reduction of the laboratory background noise. 
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Figure 19 – Profiles of particle concentrations measured with P-Trak particle counters on 
the 3rd day of sampling near the mill (i) and 3 metres from the mill (ii) (Laboratory A) 

 

5.4.2 Laboratory B 

Figure 20 presents a profile of particle concentrations measured during CNT handling in the 
laboratory glove box at a 1 metre distance, while Figure 21 presents the same data at a 3 metre 
distance. There is no significant difference between the concentration profiles, while the 
weighted mean concentrations measured are also very similar, at 3,832 particles/cm³ for the zone 
near the glove box and 3,974 particles/cm³ for the zone farther away. The background noise 
concentration corresponds to the initial concentrations of Figures 20 and 21, about 4,000 
particles/cm³. 
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Figure 20 – Particle concentrations measured 1 metre from the glove box during CNT 

handling in Laboratory B 
 

 
Figure 21 – Particle concentrations measured 3 metres from the glove box during CNT 

handling in Laboratory B 

5.4.3 Laboratory C 

Figures 22 and 23 present the continuous profiles of the particle concentrations (particles/cm³) 
and aerosol concentrations (mg/m³) measured in the glove box during CNT handling. The 
particle concentrations in the laboratory were about 900 particles/cm³ and the mass 
concentrations were 0.016 mg/m³ on average. In the glove box, much lower concentrations were 
measured, between 20 and 30 particles/cm³ and between 0.001 and 0.005 mg/m³. No particle 
level increase was measured with the P-Trak (Figure 22), while two peaks were recorded with 
the DustTrak during CNT handling (Figure 23). However, these peaks indicate relatively low 
concentrations of 0.02 and 0.04 mg/m³. 
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Figure 22 – Particle concentrations measured in the glove box during CNT handling in 

Laboratory C 

 

 
Figure 23 – Aerosol concentrations measured in the glove box during CNT handling in 

Laboratory C 
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Figures 24 and 25 present the continuous profiles of the particle concentrations (particles/cm³) 
and aerosol concentrations (mg/m³) measured during polymer handling under the laboratory 
hood. The particle and aerosol concentrations are similar to those measured in the laboratory, i.e. 
between 800 and 1,000 particles/cm³ and between 0.01 and 0.02 mg/m³, respectively. However, 
a peak is noted in each figure, referring to two distinct tasks, polymer polishing for the numeric 
concentration (Figure 24) sand polymer breaking for the mass concentrations (Figure 25). 
 

 

Figure 24 – Particle concentrations measured under the laboratory hood during polymer 
handling in Laboratory C 

 

 
Figure 25 – Aerosol concentrations measured under the laboratory hood during polymer 

handling in Laboratory C 
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6. DISCUSSION 

6.1 Welding Schools 

The measurements taken in the two welding schools indicate that the apprentice welders are 
exposed to high particle concentrations (between 61,000 and 300,000 particles/cm³). Most of 
these particles have an aerodynamic diameter smaller than 100 nm. In addition, the 
granulometric distribution profiles of the four assessed processes show bimodal distributions, 
with the first mode between 20 and 30 nm and the second mode between 200 and 300 nm. 
Pfefferkorn et al. [100] also showed a bimodal distribution for an aluminium friction stir welding 
process, with the first peak at about 30 nm and the second at 550 nm, measured with an EEPS. 
The same authors indicate that two particle types are found in the aerosols of this process: 
particles generated mechanically by tearing at the material, and metal particles produced by 
condensation, mostly spherical, with a unit diameter of 30 nm. Particles of this second type form 
agglomerated particle chains [100]. In our study, the processes used did not result in tearing of 
the particles as in the friction stir welding process. The two modes identified then essentially 
would result from the effect of agglomeration of the unitary metal oxide particles formed by 
nucleation [58]. A new characterization study by TEM/EDS using the ELPI’s impactor for 
selective collection of the particles would allow validation of this hypothesis.  
 
The results indicate that the welding processes and the metal used may be key determinants of 
exposure to fine and ultrafine particles. Other determinants are also reported in the literature. 
Thus, in the SMAW process, Soward et al. [137] showed that the electrode type was a 
determinant of particle exposure concentrations. Hovde and Raynor showed that the voltage used 
for welding was also a key determinant of exposure to fumes and that the particle concentrations 
were three times higher at 23.5 V than at 16 V for a GMAW welding process [23]. In our study, 
the students were followed over several work weeks, spread over several months, during which 
many exercises were performed. Only the work environment, the process and the metal being 
welded were controlled, but different voltages, different electrodes (e.g. E7018, E4918, E6011 
for SMAW) or different wire electrode types could be used by the students. These parameters 
could not be controlled within the framework of this study. These unconsidered parameters could 
explain in part the differences obtained for the concentrations of the SMAW process between the 
two schools, i.e. 61,000 particles/cm³ for School A and 177,000 particles/cm³ for School B. On 
the other hand, in our measurements, very close concentrations were measured in both schools 
for the FCAW and GMAW on steel processes, with concentrations of 116,000 (School A) and 
114,000 particles/cm³ (School B) for the first process and 89,000 (School A) and 92,000 (School 
B) particles/cm³ for the second process. These results suggest that, despite the above-mentioned 
uncontrolled parameters, the process itself appears to be a key determinant of exposure. 
Schoonover et al. [138] showed that the exposures to metal welding fumes of workers 
performing the GMAW and SMAW processes were higher than those of the GTAW process. 
Those measurements were taken in mass units with 37 mm cassettes, while the measurements 
taken in our study only considered particle number concentrations with diameters smaller than 1 
µm. These conceptual differences do not allow a comparison between the two measurement 
methods, but suggest differences based on them.  
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Four concentrations profiles were presented in this study (Figures 2, 3, 4 and 6). The results 
indicate that the apprentices are exposed to high peak particle concentrations during welding 
activities. However, a difference was noted between the SMAW profiles of Schools A and B. 
Indeed, the concentrations in School B remain at relatively high levels, above 100,000 
particles/cm³, between welding activities. This could reflect insufficient local ventilation in this 
school, then partially explaining the differences obtained for the SMAW process concentrations. 
However, in general, the peak concentrations indicate good efficiency of the local ventilation 
installations, because the peak concentrations are short term. This implies that if a respiratory 
protection program is established, it should focus directly on the welding periods. The P-Trak 
and the ELPI are direct reading instruments with a very good response time, allowing precise 
characterization of these peaks. However, on several occasions, the results underestimated the 
actual exposure, because several peak particle concentrations exceeded the instrument’s limit of 
500,000 particles/cm³. Other authors recognized the importance of proceeding with assessments 
of welding fume exposures with direct reading instruments to characterize these peaks [138].  
 
Finally, the data presented in this study allows characterization of the apprentices’ exposures to 
fine and ultrafine particles and a better understanding of the different determinants of these 
occupational exposures. This data is especially important, given that epidemiological studies 
suggest that apprentice welders can develop early respiratory symptoms, a warning sign of the 
possibility of developing occupational asthma [139]. 
 
6.2 Aluminium Smelter 

The results confirm the major presence of nanoscale particles in the two aluminium production 
processes. On the average, the prebaked anode process generates fewer particles than the 
Soderberg process, although high particle levels were measured during specific activities, such as 
changing anodes. High particle concentrations were also measured in the anode cooling rooms 
and in the prebaked anode fabricating processes, with concentrations reaching 500,000 
particles/cm³. These results indicate that it is important to consider the occupational exposures in 
these rooms. We also showed in this study that the workers most exposed were those who 
manually broke the crusts on the electrolytic baths. Gylseth et al. [95] already indicated that 
these workers were exposed to high fibrous particle levels, but without quantifying them in terms 
of number of particles.  
 
The granulometric distribution assessment confirms the major presence of UFPs in this work 
environment. Our results indicate that over 90% of the particles are nanoscale, and thus smaller 
than 100 nm. These results agree with the measurements taken with SMPS in other studies [17, 
19]. More specifically, Thomassen et al. [19] reported that the electrical mobility diameters were 
about 40 nm in the Soderberg process and 20 nm in the prebaked anode process. 
 
Several UFP exposure determinants were identified in this study. The finest particles thus are 
found in high concentrations near the pots, when the doors are open, and/or during handling of 
hot anodes. These results confirm that the longer the life of the particles, the more they gather by 
agglomeration and thus increase in size, while the overall numerical concentration decreases. 
These phenomena are known but still have little documentation in the work environment. 
Finally, understanding these determinants is essential to proceeding with occupational UFP 
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exposure assessments, because the collection locations and the instrument response time then 
become crucial factors in these assessments. 
 
The microscopic (TEM/EDS) studies presented in this report only concern fine and ultrafine 
aerosol fractions, and thus are not representative of the workers’ overall exposure. Furthermore, 
the elements C, Si, O and Cu could not be assessed, because they are part of the background 
noise (substrate and analysis grid). However, the TEM/EDS study indicates that most of the 
workers are exposed to particles containing the elements Al, Na and F, with proportions of 69% 
(prebaked anode process) and 54% (Soderberg process). These results agree with the study by 
Höflich et al. [140], who indicate that sodium β-alumina (NaAl11O17) and cryolite (Na3AlF6) 
were the oxides and fluorides most present in aluminium smelters. Other similar compositions 
were reported in the studies by Gylseth et al. [95] and Thomassen et al. [19]. 
 
Several fibrous particles were identified during TEM assessment. The fibre proportions were 
25% in the Soderberg process and 31% in the prebaked anode process, which corresponds to the 
30% rate mentioned by Thomassen et al. [19]. Some of these particles were identified in the 
prebaked anode process when there had not been any anode change in progress, suggesting again 
that the workers can be exposed to these fibres in all potrooms at any time. Gylseth et al. [95] 
already reported that high fibre concentrations ranging from 9 to 720 fibres/cm³ had been 
measured in the Soderberg and prebaked anode processes. These fibres were described as smaller 
than 0.1 µm in diameter and shorter than 5 µm. Voisin et al. [141] also confirmed the presence of 
short aluminium fibres (with mean lengths of 1 to 2 μm) in the bronchoalveolar fluid of four 
aluminium smelter workers, and the authors considered these fibres to be different forms of 
aluminium oxides. These same authors [141] also indicated that these fibres were highly 
biopersistent in the airway, because they were found in biological samples more than five years 
after the end of exposure. Our study showed that these fibres can have nanoscale aerodynamic 
diameters, because several fibres were observed by TEM in the ELPI’s finest stages.  
 
Finally, the high Ti rates observed and the presence of arsenic in the samples are new data. 
Höflich et al. [140] already indicated the presence of Ti oxides in their characterization of 
potroom dusts. However, the proportions were clearly lower than those obtained in this study. 
These differences could be explained by the fact that only the fine and ultrafine aerosol fractions 
were considered in this study. The small number of particles analyzed by TEM/EDS (about 170 
particles) could also explain this discrepancy and further evaluation is required. Indeed, since our 
study is the first to have performed a TEM/EDS analysis by preselection of fine and ultrafine 
aerosol fractions, new studies are necessary to confirm these results. 
 
6.3 Thermoplastic Processing Industry 

The results indicate the major presence of fine and ultrafine particles in the extrusion process 
studied. The high particle levels measured when there was no operation, and the progressive and 
significant increase in the concentrations presented in Figures 16 and 17, result from a lack of 
general ventilation in the storage and processing rooms. Provoked aeration of the premises 
(opening the doors and windows) for approximately two hours reduced the concentrations to 
arrive at levels close to the outdoor concentrations. 
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Assessment of the workers’ exposure during CNT handling did not show an increase in the 
concentrations measured with the P-Trak particle counters. This is probably explained by the fact 
that the CNTs used appear in the form of large agglomerates (>100 micrometres), which are far 
above the P-Trak upper detection limit (1 micrometre). It is then possible that high levels of 
larger particles can be measured by mass methods. Mass measurements are also proposed by the 
NIOSH to assess carbon nanotubes and nanofibre exposures, based on the measurement method 
for diesel particulate matter (NIOSH Method 5040) [125]. However, no equivalent method exists 
at the IRSST, although a synthesis document on the Diesel Emissions Evaluation Program 
(DEEP) was published in 2001 on the subject [142]. 
 
Levels exceeding 200,000 particles/cm³ of air were measured during extruder startup (1 metre), 
with or without nanotubes. Some authors report exposures to complex mixes of vapours and 
fumes during different processes in the plastics processing industry [143-145]. In particular, they 
found short-chain hydrocarbons (C2-C6), long-chain hydrocarbons (C9-C11) and aromatic and 
cyclic hydrocarbons [144]. Forrest et al. [143] also indicate that extrusion processes generate 
large quantities of fumes, in comparison with injection moulding processes. However, to our 
knowledge, no specific study exists on the UFP exposures of this sector’s workers. The 
preliminary data presented in this report thus constitutes new information.  
 
6.4 University Laboratories Producing or Using Nanoparticles 

6.4.1 Laboratory A 

The levels measured in this laboratory are low and well below the levels reported in other 
nanoparticle synthesis processes, which can reach concentrations of 106,000 particles/cm3 [64]. 
The process studied is a closed process and milling is performed in liquid nitrogen, which greatly 
limits the powdering and explains why the particle levels are relatively stable and similar at the 
two sampling stations. However, slight increases are noted in the particle concentrations during 
experimentation for all the sampled tasks. In addition, the concentrations measured in the 
gaseous phase of nitrogen show that particles exit the liquid phase, drawn by the flow of gas 
towards the floor. Maynard et al. had also proposed that certain nanoparticles (CNT) could be 
drawn by air movements [146]. Finally, during dismantling of the mill, concentration differences 
appear between the zone near the mill and the zone farther away. The most noticeable difference 
was recorded on the third day, when the particles were nanoscale. These results indicate the 
possibility of NP exposure during specific opening and NP collection stages in the mill and 
during the dismantling and cleaning stage. This process requires in-depth assessment, but it 
appears at this stage that specific means of prevention should be put in place. 
 
6.4.2 Laboratory B 

Assessment of the concentrations during CNT handling in the glove box did not show an 
increase in the particle number concentrations in the laboratory at the two sampled stations. 
Although this data does not allow a conclusion on the potential particle generation in the glove 
box’s air, it shows that no particles are generated outside it. These conclusions are valid for 
particles within the P-Trak detection range from 20 nm to 1,000 nm. 
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6.4.3 Laboratory C 

Assessment of the concentrations during CNT handling, whether in the glove box or under the 
laboratory hood, did not show an increase in particle number concentrations. This is probably 
explained by the fact that the CNTs use appear in the form of large agglomerates (>100 
micrometres), which are far above the P-Trak detection limit (<1 micrometre). These results also 
go in the same direction as other measurements taken in the laboratory during CNT handling 
[146, 147]. Furthermore, Maynard et al. indicated that mere handling of CNT powders did not 
generate enough energy to overcome the van der Waals forces present in these particles [146]. 
However, the authors also indicated that uncertainties remained for more energetic processes that 
could generate high NP concentrations. 
 
Although the concentrations measured are low, two peak aerosol mass concentrations were 
measured during nanotube handling in the glove box with the DustTrak. These results suggest 
that larger particles, with a diameter >1,000 nm, corresponding to the P-Trak detection limit, 
could be airborne momentarily. These results necessitate in-depth assessments in order to 
confirm the effectiveness of mass measurements in assessing CNT exposure, but it appears that 
the prevention method in place in this laboratory, CNT isolation in a glove box, is suitable.  
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7.GENERAL CONSIDERATIONS AND RECOMMENDATIONS 

 
The NM concentration assessments performed in this project on real occupational exposure cases 
are the first published by the IRSST. The results presented in this report will make it possible to 
complete certain data on occupational NM exposure and to specify the tools for assessing 
exposure to these products based on certain “field” parameters.  
 
7.1 Occupational Exposures 

Aluminium smelter workers, persons who perform welding tasks and thermoplastic processing 
industry workers are exposed to high UFP concentrations. Since several authors recognize UFPs 
as possible causes of respiratory and cardiovascular problems [11-16], it is important to continue 
assessing the nature of UFP exposure and the UFP exposure levels of the groups of workers at 
risk. This data is essential to the success of the epidemiological surveys on the health effects of 
these contaminants. 
 
The assessments performed within the context of this report do not show high NP concentrations 
in the research laboratories. Only the milling process generated detectable NP concentrations. 
CNT handling in the glove boxes of the other two laboratories seems to prevent occupational 
exposure adequately. In Laboratory C, peak particle concentrations were measured during 
polymer polishing. Characterization studies could allow identification of the nature of these 
particles and their agglomeration state.  
 
7.2 Exposure Assessment Tools 

There is currently no consensus concerning UFP and NP exposure assessment measurements. 
However, this study showed that the P-Trak was suitable for assessment of UFP concentrations. 
In a comparative field study, Zhu et al. [148] also showed that the P-Trak is an effective 
instrument to compare UFP exposures in relation to other more perfected but non-portable 
instruments. However, the authors indicate that special attention must be paid to measurements 
near combustion sources. Park et al. state that the P-Trak could overestimate certain exposures to 
high concentrations by a factor of 3 [86]. This device’s quick response time also let us show the 
peak exposures during welding operations. Finally, all the “field” studies that seek to assess UFP 
exposures should integrate a granulometric aerosol distribution assessment to confirm the 
presence of UFPs. The P-Trak’s detection limits let it measure fine and ultrafine particles 
simultaneously.  
 
The assessments performed during CNT handling did not show an increase in the particle 
concentrations measured with the P-Trak devices, whether during handling of powders in an 
open environment (thermoplastic), in a university laboratory (Laboratory B) or even in a glove 
box (Laboratory C). Bello et al. [147] also showed that in a chemical vapour deposition (CVD) 
laboratory, no detectable quantity of NPs is generated in the laboratory. The measurements had 
been performed with CPCs and an FMPS. Tsai et al. also indicate that the particle number 
concentrations measured during different nanopowder handling activities were close to the 
background noise levels [69]. These results do not indicate that the workers are unlikely to be 
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exposed to NPs, but that the P-Trak cannot measure these particles. In Laboratory C, when a 
DustTrak had been placed in the glove box, peaks had been recorded in relation to the CNT 
handling operations. The CNTs used in the thermoplastic processing plant and in Laboratory C 
were the same, Baytubes® Carbon Nanotubes (C150HP) made by Bayer MaterialScience (BMS) 
[135]. These nanotubes have agglomerated sizes over 100 micrometres, giving them limited 
inhalation exposure potential, according to the company [136]. Our results indicate that 
measurement with the P-Trak particle counters then is inappropriate for these raw powder 
handling stages. However, it remains possible that high agglomerated particle levels can be 
measured by other sampling methods. Mass measurements are proposed by the NIOSH to assess 
exposures to carbon nanotubes and nanofibres [125]. Tsai et al. also conclude from their study 
that mass measurement of respirable dusts is necessary for assessment of occupational NP 
exposure [69]. Finally, the results presented confirm that mass assessments should be considered 
when handling nanopowders.  
 
In view of this research, it appears that a characterization and control study of occupational NP 
and UFP exposure should include an assessment of the mass and particle number concentrations, 
a measurement of the granulometric distribution and an electron microscopic characterization of 
the nanosized particles [149].  
 
The conclusions and recommendations presented in this report are only one aspect of assessment 
of the human health risks posed by UFPs and NPs. The toxicity aspect, but also the scientific 
uncertainty, should be considered when pronouncing on the risk and the means of prevention to 
be deployed. 
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