Type de document

Études primaires

Année de publication

2017

Langue

Anglais

Titre de la revue

Annals of Biomedical Engineering

Première page

2373

Dernière page

2382

Résumé

Underlying mechanisms of obesity-related back pain remain unexplored. Thus, we aim to determine the effect of obesity and its shapes on the spinal loads and the associated risks of injury. Obesity shapes were initially constructed by principal component analysis based on datasets on 5852 obese individuals. Spinal loads, cycles to vertebral failure and trunk stability margin were estimated in a subject-specific trunk model taking account of personalized musculature, passive ligamentous spine, obesity shapes, segmental weights, spine kinematics and bone mineral density. Three obesity shapes (mean and extreme abdominal circumferences) at three body weights (BWs) of 86, 98 and 109 kg were analyzed. Additional BW (12 kg) increased spinal loads by ~11.8%. Higher waist circumferences at identical BW increased spinal forces to the tune of ~20 kg additional BW and the risk of vertebral fatigue compression fracture by 3–7 times when compared with smaller waist circumferences. Forward flexion, greater BW and load in hands increased the trunk stability margin. Spinal loads markedly increased with BW, especially at greater waist circumferences. The risk of vertebral fatigue fracture also substantially increased at greater waist circumferences though not at smaller ones. Obesity and its shape should be considered in spine biomechanics.

Mots-clés

Obésité, Obesity, Mécanique humaine, Body mechanics, Colonne vertébrale, Spinal column, Évaluation du risque, Hazard evaluation, Différence liée au poids corporel, Difference in body weight

Numéro de projet IRSST

2014-0009

Partager

COinS